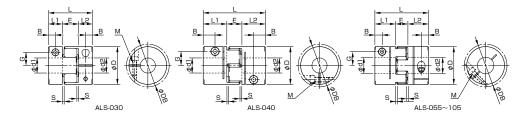


STARFLEX ALS ABN - Datenblatt


■ Technische Daten

	Drehme	oment		Versatz		Max. Drehzahl	Statische	Radialsteifigkeit	Trägheitsmoment	Masse
Modell	Nominal [Nm]	Max. [Nm]	Parallel [mm]	Winkel [°]	Axial [mm]	[min ⁻¹]	Torsionssteifigkeit [Nm/rad]	[N/mm]	[kg·m²]	[kg]
ALS-030B	(12.5)	(25)	0,17	1	-0,2 ∼ +1,0	10000	90	460	$6,07 \times 10^{-6}$	0,043
ALS-040B	(17)	(34)	0,20	1	-0,5 ∼ +1,2	10000	400	640	$4,00 \times 10^{-5}$	0,16
ALS-055B	(60)	(120)	0,22	1	-0,2 ∼ +1,4	7000	1150	400	1,63 × 10 ⁻⁴	0,34
ALS-065B	(160)	(320)	0,25	1	-0,6 ∼ +1,5	5900	2000	800	$3,69 \times 10^{-4}$	0,54
ALS-080B	(325)	(650)	0,28	1	-0,9 ∼ +1,8	4800	4550	600	$1,04 \times 10^{-3}$	1,00
ALS-095B	(450)	(900)	0,32	1	-0,5 ∼ +2,0	4000	12000	800	$2,25 \times 10^{-3}$	1,50
ALS-105B	(525)	(1050)	0,36	1	-0,9 ∼ +2,0	3700	15000	2000	$3,75 \times 10^{-3}$	2,05

[•] Ziehen Sie die Liste der Standardbohrungsdurchmesser und Übertragungs-Nenndrehmoment zurate, da es aufgrund der Haltekraft zwischen Kupplung und Welle Beschränkungen des Nenndrehmoments und max. Drehmoments geben kann.

• Axialverschiebung ist in negativer Richtung nicht zulässig.

Abmessungen

|--|

	d1	• d2									М	Anzugsdreh-
Modell	Min.	Max.	D	DB	L	L1 • L2	E	S	В	G	Anzahl – Nenn- durchm.	moment [Nm]
ALS-030B	6	16	30	30	35	11	13	1,5	5,5	10,5	1-M3	1,5
ALS-040B	8	24	40	47 (45,1)	66	25	16	2	8 (6,5)	15	1-M6 (1-M5)	14 (7)
ALS-055B	10	30	55	56	78	30	18	2	8	20,5	1-M6	14
ALS-065B	14	38	65	70,7	90	35	20	2,5	11,5	25	1-M8	30
ALS-080B	19	45	80	80	114	45	24	3	11,5	30	1-M8	30
ALS-095B	20	55	95	98,5	126	50	26	3	12,5	37	1-M10	68
AI S-105R	25	60	105	105	140	56	28	3.5	12.5	40	1-M10	68

[•] Der øDB-Wert wurde unter der Annahme gemessen, dass der Kopf der Klemmschraube größer ist als der Außendurchmesser der Nabe.

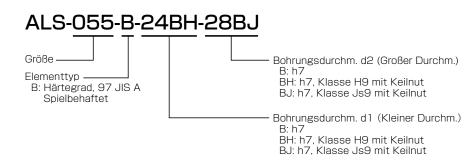
[•] Höhere Drehzahlen durch Wuchten möglich.

Die angegebene statische Torsionssteifigkeit entstammt Messungen, die bei 20 °C vorgenommen wurden.
 Das Trägheitsmoment und die Masse werden für den maximalen Bohrungsdurchmesser angegeben.

[•] Der Nenndurchmesser für die Klemmschraube M entspricht der Anzahl abzüglich dem Nenndurchmesser der Schraube, wobei die Anzahl für eine Nabe auf einer Seite gilt.
• Die Werte in () in der obigen Tabelle gelten für ALS-040 Bohrungsdurchmesser ø22 und ø24, øDB: 45,1 mm, B: 6,5 mm, M: 1-M5, Anzugsmoment der Klemmschraube: 7 Nm.

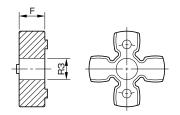
Standardbohrungsdurchmesser

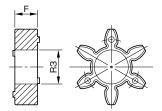
																															E	inheit	[mm]
Modell	Dreh-								St	tanda	ardbo	hrun	gsdu	rchm	iesse	r d1,	d2 [n	nm] ւ	ınd Ü	bertr	ragur	ıgs-N	ennd	lrehm	ome	nt [N	lm]						
Modeli	moment	3	4	5	6	6 .35	7	8	10	11	12	14	15	16	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	55	56	60
ALS-030B	Nominal				3,6	3,6	4,1	4,9	7,0	7,5	8,2	9,7	10	11																			
ALS-U3UB	Max.				3,6	3,6	4,1	4,9	7,0	7,5	8,2	9,7	10	11																			
ALS-040B	Nominal							17	17	17	17	17	17	17	17	17	17	17	17														
AL5-040B	Max.							22	27	29	31	34	34	34	34	34	34	30	32														
ALS-055B	Nominal								34	38	41	49	53	57	60	60	60	60	60	60	60	60											
AL5-033B	Max.								34	38	41	49	53	57	65	69	72	80	88	92	104	111											
ALS-065B	Nominal											54	61	68	82	89	96	109	123	130	151	160	160	160	160								
AL3-003B	Max.											54	61	68	82	89	96	109	123	130	151	165	179	199	220								
ALS-080B	Nominal															105	111	124	137	143	162	175	188	207	226	238	251	270					
AL3-000B	Max.															105	111	124	137	143	162	175	188	207	226	238	251	270					
ALS-095B	Nominal																215	295	365	400	450	450	450	450	450	450	450	450	450	450	450		
AL3-073B	Max.																215	295	365	400	506	575	646	716	786	856	900	900	900	900	900		
ALS-105B	Nominal																			525	525	525	525	525	525	525	525	525	525	525	525	525	525
WE3-103B	Max.																			590	630	660	689	733	800	870	950	1050	1050	1050	1050	1050	1050

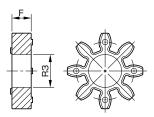

- Bohrungsdurchmesser, deren Felder Zahlen enthalten, werden als Standardbohrungsdurchmesser unterstützt.
 Bohrungsdurchmesser, deren Felder Zahlen enthalten, haben auf Grund der Haltekraft der Wellenverbindungskomponente ein eingeschränktes Übertragungs-Nenndrehmoment. Die Zahlen geben das Nenndrehmoment [Nm] an.
- Die empfohlene Wellentoleranz ist Klasse h7 (HA). Bei einem Wellendurchmesser von 35 mm beträgt die Toleranz jedoch ***0025**
 Bohrungsdurchmesser zwischen den Minimum- und Maximumangaben in der Abmessungstabelle sind kompatibel. Bei Bohrungsdurchmessern, die von den in der obigen Tabelle abweichen, wenden Sie sich bitte an Miki Pulley für weitere Informationen.

Standards Keilnuten

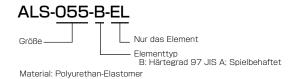
				H9 K	eilnut									JS9 K	eilnut				
	inaler sdurchm.	Boh- rungs-	Keilnut- breite	Kelinut-		inaler sdurchm.	Boh- rungs-	Keilnut- breite	Keilnut-		inaler Jsdurchm.	Boh- rungs-	Keilnut-	Keilnut-		inaler Jsdurchm.	Boh- rungs-	Keilnut-	Keilnut-
Wellen- durch- messer	Wellen- toleranz h7		W1· W2 [mm]	höhe T1·T2 [mm]	Wellen- durch- messer	Wellen- toleranz h7		W1 · W2 [mm]	höhe T1·T2 [mm]	Wellen- durch- messer	Wellen- toleranz h7	durchm.	breite W1 · W2 [mm]	höhe T1 · T2 [mm]	Wellen- durch- messer	Wellen- toleranz h7	durchm. d1 · d2 [mm]	breite W1 · W2 [mm]	höhe T1·T2 [mm]
8	ВН	8	2 +0,025	9 +0,3	20	ВН	20	6 +0,030	22,8 +0,3	8	BJ	8	2 ±0,0125	9 +0,3	20	BJ	20	6 ±0,0150	22,8 +0,3
9	ВН	9	3 +0,025	10,4 +0,3	22	ВН	22	6 +0,030	24,8 +0,5	9	BJ	9	3 ±0,0125	10,4 +0,3	22	BJ	22	6 ±0,0150	24,8 +0,3
10	ВН	10	3 +0,025	11,4 +0,3	24	ВН	24	8 +0,036	27,3 +0,5	10	BJ	10	3 ±0,0125	11,4 +0,3	24	BJ	24	8 ±0,0180	27,3 +0,3
11	ВН	11	4 +0,030	12,8 +0,3	25	ВН	25	8 +0,036	28,3 +0,3	11	BJ	11	4 ±0,0150	12,8 +0,3	25	BJ	25	8 ±0,0180	28,3 +0,3
12	ВН	12	4 +0,030	13,8 +0,3	28	ВН	28	8 +0,036	31,3 +0,5	12	BJ	12	4 ±0,0150	13,8 +0,3	28	BJ	28	8 ±0,0180	31,3 +0,3
13	ВН	13	5 +0,030	15,3 ^{+0,3}	30	ВН	30	8 +0,036	33,3 ^{+0,3}	13	BJ	13	5 ±0,0150	15,3 ^{+0,3}	30	BJ	30	8 ±0,0180	33,3 ^{+0,3}
14	ВН	14	5 +0,030	16,3 +0,3	32	ВН	32	10 +0,036	35,3 ^{+0,5}	14	BJ	14	5 ±0,0150	16,3 +0,3	32	BJ	32	10 ±0,0180	35,3 ^{+0,3}
15	ВН	15	5 +0,030	17,3 ^{+0,3}	35	ВН	35	10 +0,036	38,3 +0,5	15	BJ	15	5 ±0,0150	17,3 ^{+0,3}	35	BJ	35	10 ±0,0180	38,3 +0,3
16	ВН	16	5 +0,030	18,3 ^{+0,3}	38	ВН	38	10 +0,036	41,3 +0,5	16	BJ	16	5 ±0,0150	18,3 ^{+0,3}	38	BJ	38	10 ±0,0180	41,3 +0,3
17	ВН	17	5 +0,030	19,3 +0,3	40	ВН	40	12 +0,043	43,3 +0,5	17	BJ	17	5 ±0,0150	19,3 +0,3	40	BJ	40	12 ±0,0215	43,3 +0,3
18	ВН	18	6 +0,030	20,8 +0,3	42	ВН	42	12 +0,043	45,3 ^{+0,3}	18	BJ	18	6 ±0,0150	20,8 +0,3	42	BJ	42	12 ±0,0215	45,3 ^{+0,3}
19	ВН	19	6 +0,030	21,8 +0,3	45	ВН	45	14 +0,043	48,8 +0,3	19	BJ	19	6 ±0,0150	21,8 +0,3	45	BJ	45	14 ±0,0215	48,8 +0,3


[•] Wir können auch Standards fertigen, die oben nicht aufgeführt sind. Bitte kontaktieren Sie Miki Pulley.


So können Sie bestellen



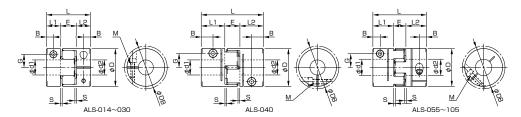
Abmessungen Zahnkranz


ALS-030-B-EL

ALS-040-B-EL

ALS-055 ~ 105-B-EL

Modell	F (mm)	R3 (mm)
ALS-030-B-EL	10,2	10,5
ALS-040-B-EL	12	18,5
ALS-055-B-EL	14	27,5
ALS-065-B-EL	15	32
ALS-080-B-EL	18	41
ALS-095-B-EL	20	47
ALS-105-B-EL	21	50


STARFLEX ALS ARN - Datenblatt

■ Technische Daten

	Drehm	oment		Versatz		Max. Drehzahl	Statische	Radialsteifigkeit	Trägheitsmoment	Masse
Modell	Nominal [Nm]	Max. [Nm]	Parallel [mm]	Winkel [°]	Axial [mm]	[min ⁻¹]	Torsionssteifigkeit [Nm/rad]	[N/mm]	[kg·m²]	[kg]
ALS-014R	(2)	(4)	0,10	1	0~+0,6	10000	21	380	$1,98 \times 10^{-7}$	0,007
ALS-020R	(5)	(10)	0,10	1	0 ∼ +0,8	10000	43	400	1,09 × 10 ⁻⁶	0,019
ALS-030R	(12,5)	(25)	0,10	1	0 ∼ +1,0	10000	136	650	6,19 × 10 ⁻⁶	0,045
ALS-040R	(17)	(34)	0,10	1	0 ~ +1,2	10000	1550	1700	4,01 × 10 ⁻⁵	0,16
ALS-055R	(60)	(120)	0,10	1	0 ∼ +1,4	7000	2000	1350	1,63 × 10 ⁻⁴	0,34
ALS-065R	(160)	(320)	0,10	1	0 ~ +1,5	5900	3100	1400	$3,69 \times 10^{-4}$	0,54
ALS-080R	(325)	(650)	0,10	1	0 ∼ +1,8	4800	6000	1710	$1,04 \times 10^{-3}$	1,00
ALS-095R	(450)	(900)	0,10	1	-0,5 ∼ +2,0	4000	10000	4200	$2,25 \times 10^{-3}$	1,50
ALS-105R	(525)	(1050)	0,15	1	-0,9 ∼ +2,0	3700	12000	5000	$3,75 \times 10^{-3}$	2,05

[•] Ziehen Sie die Liste der Standardbohrungsdurchmesser und Übertragungs-Nenndrehmoment zurate, da es aufgrund der Haltekraft zwischen Kupplung und Welle Beschränkungen des Nenndrehmoments und max. Drehmoments

Abmessungen

EIN	nei	τμ	nr	r

	d1	• d2									M	Anzugsdreh-
Modell	Min.	Max.	D	DB	L	L1 • L2	E	S	В	G	Anzahl – Nenndurchm.	moment [Nm]
ALS-014R	3	7	14	16,4	22	7	8	1	3,5	5	1-M2	0,4
ALS-020R	4	10	20	21,7	30	10	10	1	5	7,5	1-M2,5	1
ALS-030R	6	16	30	30	35	11	13	1,5	5,5	10,5	1-M3	1,5
ALS-040R	8	24	40	47 (45,1)	66	25	16	2	8 (6,5)	15	1-M6 (1-M5)	14 (7)
ALS-055R	10	30	55	56	78	30	18	2	8	20,5	1-M6	14
ALS-065R	14	38	65	70,7	90	35	20	2,5	11,5	25	1-M8	30
ALS-080R	19	45	80	80	114	45	24	3	11,5	30	1-M8	30
ALS-095R	20	55	95	98,5	126	50	26	3	12,5	37	1-M10	68
ALS-105R	25	60	105	105	140	56	28	3.5	12.5	40	1-M10	68

[•] Der øDB-Wert wurde unter der Annahme gemessen, dass der Kopf der Klemmschraube größer ist als der Außendurchmesser der Nabe.

geben kann.

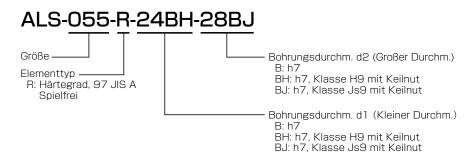
• Axialverschiebung ist in negativer Richtung nicht zulässig.

Höhere Drehzahlen durch Wuchten möglich.
 Die angegebene statische Torsionssteifigkeit entstammt Messungen, die bei 20 °C vorgenommen wurden.
 Das Trägheitsmoment und die Masse werden für den maximalen Bohrungsdurchmesser angegeben.

Der Nenndurchmesser für die Klemmschraube M entspricht der Anzahl abzüglich dem Nenndurchmesser der Schraube, wobei die Anzahl für eine Nabe auf einer Seite gilt.
 Die Werte in () in der obigen Tabelle gelten für ALS-040 Bohrungsdurchmesser ø22 und ø24, øDB: 45,1 mm, B: 6,5 mm, M: 1-M5, Anzugsmoment der Klemmschraube: 7 Nm.

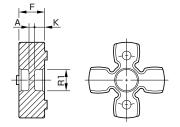
Standardbohrungsdurchmesser

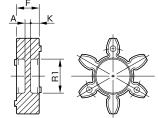
																															E	inheit	[mm]
Modell	Dreh-								S	tanda	ardbo	hrun	gsdu	ırchm	iesse	r d1,	d2 [n	nm] u	ınd Ü	berti	ragur	ngs-N	ennd	rehm	nome	nt [N	lm]						
Modell	moment	3	4	5	6	6 ,35	7	8	10	11	12	14	15	16	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	55	56	60
ALS-014R	Nominal	0,5	0,9	1,3	1,5	1,7	1,9																										
AL5-014K	Max.	0,5	0,9	1,3	1,5	1,7	1,9																										
ALS-020R	Nominal		2,1	2,2	2,7	2,7	3,0	3,5	4,5																								
AL5-UZUK	Max.		2,1	2,2	2,7	2,7	3,0	3,5	4,5																								
ALS-030R	Nominal				3,6	3,6	4,1	4,9	7,0	7,5	8,2	9,7	10	11																			
ALS-USUK	Max.				3,6	3,6	4,1	4,9	7,0	7,5	8,2	9,7	10	11																			
ALS-040R	Nominal							17	17	17	17	17	17	17	17	17	17	17	17														
AL5-040K	Max.							22	27	29	31	34	34	34	34	34	34	30	32														
ALS-055R	Nominal								34	38	41	49	53	57	60	60	60	60	60	60	60	60											
ALS-USSK	Max.								34	38	41	49	53	57	65	69	72	80	88	92	104	111											
ALS-065R	Nominal											54	61	68	82	89	96	109	123	130	151	160	160	160	160								
ALS-UOSK	Max.											54	61	68	82	89	96	109	123	130	151	165	179	199	220								
ALS-080R	Nominal															105	111	124	137	143	162	175	188	207	226	238	251	270					
ALS-UOUK	Max.															105	111	124	137	143	162	175	188	207	226	238	251	270					
ALS-095R	Nominal																215	295	365	400	450	450	450	450	450	450	450	450	450	450	450		
ALS-U75K	Max.																215	295	365	400	506	575	646	716	786	856	900	900	900	900	900		
ALS-105R	Nominal																			525	525	525	525	525	525	525	525	525	525	525	525	525	525
AL3-103K	Max.																			590	630	660	689	733	800	870	950	1050	1050	1050	1050	1050	1050

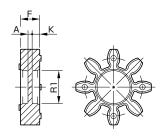

- Bohrungsdurchmesser, deren Felder Zahlen enthalten, werden als Standardbohrungsdurchmesser unterstützt.
 Bohrungsdurchmesser, deren Felder Zahlen enthalten, haben auf Grund der Haltekraft der Wellenverbindungskomponente ein eingeschränktes Übertragungs-Nenndrehmoment. Die Zahlen geben das Nenndrehmoment [Nm] an.
- Die empfohlene Wellentoleranz ist Klasse h7 (HA). Bei einem Wellendurchmesser von 35 mm beträgt die Toleranz jedoch -0005 Bohrungsdurchmesser zwischen den Minimum- und Maximumangaben in der Abmessungstabelle sind kompatibel. Bei Bohrungsdurchmessern, die von den in der obigen Tabelle abweichen, wenden Sie sich bitte an Miki Pulley für weitere Informationen.

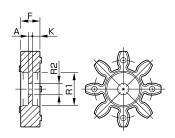
Standards Keilnuten

				H9 K	eilnut									JS9 K	eilnut				
Bohrung Wellen- durch-	inaler sdurchm. Wellen- toleranz	rungs- durchm. d1 · d2	Keilnut- breite W1 · W2 [mm]	Keilnut- höhe T1 · T2 [mm]	Bohrung Wellen- durch-	toleranz		Keilnut- breite W1 · W2 [mm]	Keilnut- höhe T1 · T2 [mm]	Bohrung Wellen- durch-	toleranz		Keilnut- breite W1 · W2 [mm]	Keilnut- höhe T1 · T2 [mm]	Bohrung Wellen- durch-	toleranz	d1 ⋅ d2	Keilnut- breite W1 · W2 [mm]	Keilnut- höhe T1 · T2 [mm]
messer	h7	[mm]			messer	h7	[IIIIII]			messer	h7	[IIIIII]			messer	h7	[mm]		
8	ВН	8	2 +0,025	9 +0,3	20	ВН	20	6 +0,030	22,8 +0,3	8	BJ	8	2 ±0,0125	9 +0,3	20	BJ	20	6 ±0,0150	22,8 +0,3
9	ВН	9	3 +0,025	10,4 +0,3	22	ВН	22	6 +0,030	24,8 +0,3	9	BJ	9	3 ±0,0125	10,4 +0,3	22	BJ	22	6 ±0,0150	24,8 +0,3
10	ВН	10	3 +0,025	11,4 +0,3	24	ВН	24	8 +0,036	27,3 +0,3	10	BJ	10	3 ±0,0125	11,4 +0,3	24	BJ	24	8 ±0,0180	27,3 +0,3
11	ВН	11	4 +0,030	12,8 +0,3	25	ВН	25	8 +0,036	28,3 +0,3	11	BJ	11	4 ±0,0150	12,8 +0,3	25	BJ	25	8 ±0,0180	28,3 +0,3
12	ВН	12	4 +0,030	13,8 +0,3	28	ВН	28	8 +0,036	31,3 ^{+0,3}	12	BJ	12	4 ±0,0150	13,8 +0,3	28	BJ	28	8 ±0,0180	31,3 +0,3
13	ВН	13	5 +0,030	15,3 +0,3	30	ВН	30	8 +0,036	33,3 ^{+0,3}	13	BJ	13	5 ±0,0150	15,3 ^{+0,3}	30	BJ	30	8 ±0,0180	33,3 ^{+0,3}
14	ВН	14	5 +0,030	16,3 +0,3	32	ВН	32	10 +0,036	35,3 ^{+0,3}	14	BJ	14	5 ±0,0150	16,3 ^{+0,3}	32	BJ	32	10 ±0,0180	35,3 ^{+0,3}
15	ВН	15	5 +0,030	17,3 ^{+0,3}	35	ВН	35	10 +0,036	38,3 +0,3	15	BJ	15	5 ±0,0150	17,3 ^{+0,3}	35	BJ	35	10 ±0,0180	38,3 ^{+0,3}
16	ВН	16	5 +0,030	18,3 ^{+0,3}	38	ВН	38	10 +0,036	41,3 +0,3	16	BJ	16	5 ±0,0150	18,3 ^{+0,3}	38	BJ	38	10 ±0,0180	41,3 +0,3
17	ВН	17	5 +0,030	19,3 +0,3	40	ВН	40	12 +0,043	43,3 +0,3	17	BJ	17	5 ±0,0150	19,3 +0,3	40	BJ	40	12 ±0,0215	43,3 +0,3
18	ВН	18	6 +0,030	20,8 +0,3	42	ВН	42	12 +0,043	45,3 ^{+0,3}	18	BJ	18	6 ±0,0150	20,8 +0,3	42	BJ	42	12 ±0,0215	45,3 +0,3
19	ВН	19	6 +0,030	21,8 +0,3	45	ВН	45	14 +0,043	48,8 +0,3	19	BJ	19	6 ±0,0150	21,8 +0,3	45	BJ	45	14 ±0,0215	48,8 +0,3


[•] Wir können auch Standards fertigen, die oben nicht aufgeführt sind. Bitte kontaktieren Sie Miki Pulley.

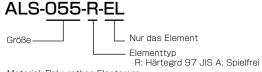

So können Sie bestellen





Abmessungen Zahnkranz

 $\mathsf{ALS}\text{-}\mathsf{014} \sim \mathsf{030}\text{-}\mathsf{R}\text{-}\mathsf{EL}$

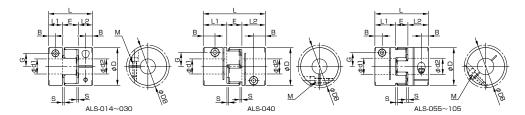

ALS-040-R-EL

 $\mathsf{ALS}\text{-}\mathsf{055} \sim \mathsf{065}\text{-}\mathsf{R}\text{-}\mathsf{EL}$

 $\rm ALS\text{-}080 \sim 105\text{-}R\text{-}EL$

Modell	F (mm)	R1 (mm)	R2 (mm)	K (mm)	A (mm)
ALS-014-R-EL	6,2	3,5	-	2,5	1,2
ALS-020-R-EL	8,2	6,2	-	3,4	1,4
ALS-030-R-EL	10,2	8,5	-	4	2,2
ALS-040-R-EL	12	18	-	4,5	3
ALS-055-R-EL	14	24	-	5,5	3
ALS-065-R-EL	15	30	-	5,5	4
ALS-080-R-EL	18	37	15	7	4
ALS-095-R-EL	20	43	20	8	4
ALS-105-R-EL	21	50	20	8,5	4

Material: Polyurethan-Elastomer


STARFLEX ALS AYN - Datenblatt

■ Technische Daten

	Drehm	oment		Versatz		Max. Drehzahl	Statische	Radialsteifigkeit	Trägheitsmoment	Masse
Modell	Nominal [Nm]	Max. [Nm]	Parallel [mm]	Winkel [°]	Axial [mm]	[min ⁻¹]	Torsionssteifigkeit [Nm/rad]	[N/mm]	[kg·m²]	[kg]
ALS-014Y	(1,2)	(2,4)	0,10	1	0~+0,6	10000	12	200	$1,98 \times 10^{-7}$	0,007
ALS-020Y	(3)	(6)	0,15	1	0 ∼ +0,8	10000	24	210	$1,09 \times 10^{-6}$	0,019
ALS-030Y	(7,5)	(15)	0,15	1	0~+1,0	10000	73	330	6,19 × 10 ⁻⁶	0,045
ALS-040Y	(10)	(20)	0,10	1	0 ~ +1,2	10000	760	940	4,01 × 10 ⁻⁵	0,16
ALS-055Y	(35)	(70)	0,15	1	0~+1,4	7000	1400	1160	1,63 × 10 ⁻⁴	0,34
ALS-065Y	(95)	(190)	0,15	1	0 ~ +1,5	5900	2100	1200	3,69 × 10 ⁻⁴	0,54
ALS-080Y	(190)	(380)	0,15	1	0 ∼ +1,8	4800	4000	1430	$1,04 \times 10^{-3}$	1,00
ALS-095Y	(265)	(530)	0,15	1	-0,5 ∼ +2,0	4000	6000	2400	$2,25 \times 10^{-3}$	1,50
ALS-105Y	(310)	(620)	0,20	1	-0,9 ∼ +2,0	3700	7000	4000	$3,75 \times 10^{-3}$	2,05

[•] Ziehen Sie die Liste der Standardbohrungsdurchmesser und Übertragungs-Nenndrehmoment zurate, da es aufgrund der Haltekraft zwischen Kupplung und Welle Beschränkungen des Nenndrehmoments und max. Drehmoments

Abmessungen

Einheit	lmm
 Anzuasd	reh-

	d1	I • d2									M	Anzugsdreh-
Modell	Min.	Max.	D	DB	L	L1 • L2	E	S	В	G	Anzahl – Nenn- durchm.	moment [Nm]
ALS-014	Y 3	7	14	16,4	22	7	8	1	3,5	5	1-M2	0,4
ALS-020	Y 4	10	20	21,7	30	10	10	1	5	7,5	1-M2,5	1
ALS-030	Y 6	16	30	30	35	11	13	1,5	5,5	10,5	1-M3	1,5
ALS-040	Y 8	24	40	47 (45,1)	66	25	16	2	8 (6,5)	15	1-M6 (1-M5)	14 (7)
ALS-055	Y 10	30	55	56	78	30	18	2	8	20,5	1-M6	14
ALS-065	Y 14	38	65	70,7	90	35	20	2,5	11,5	25	1-M8	30
ALS-080	Y 19	45	80	80	114	45	24	3	11,5	30	1-M8	30
ALS-095	Y 20	55	95	98,5	126	50	26	3	12,5	37	1-M10	68
AI S-105	Y 25	60	105	105	140	56	28	3.5	12.5	40	1-M10	68

[•] Der øDB-Wert wurde unter der Annahme gemessen, dass der Kopf der Klemmschraube größer ist als der Außendurchmesser der Nabe.

geben kann.

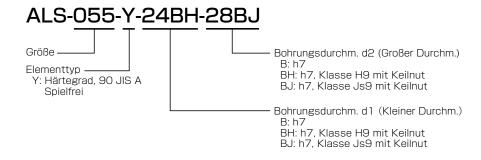
• Axialverschiebung ist in negativer Richtung nicht zulässig.

Höhere Drehzahlen durch Wuchten möglich.
 Die angegebene statische Torsionssteifigkeit entstammt Messungen, die bei 20 °C vorgenommen wurden.
 Das Trägheitsmoment und die Masse werden für den maximalen Bohrungsdurchmesser angegeben.

Der Nenndurchmesser für die Klemmschraube M entspricht der Anzahl abzüglich dem Nenndurchmesser der Schraube, wobei die Anzahl für eine Nabe auf einer Seite gilt.
 Die Werte in () in der obigen Tabelle gelten für ALS-040 Bohrungsdurchmesser ø22 und ø24, øDB: 45,1 mm, B: 6,5 mm, M: 1-M5, Anzugsmoment der Klemmschraube: 7 Nm.

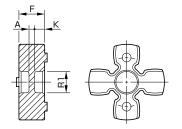
Standardbohrungsdurchmesser

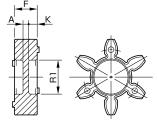
																															E	inheit	[mm]
Modell	Dreh-								S	tanda	ardbo	hrun	gsdu	ırchm	iesse	r d1,	d2 [n	nm] u	ınd Ü	bertr	agun	gs-N	ennd	rehm	ome	nt [N	lm]						
Woden	moment	3	4	5	6	6 ,35	7	8	10	11	12	14	15	16	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	55	56	60
ALS-014Y	Nominal	0,5	0,9	1,2	1,2	1,2	1,2																										
AL3-0141	Max.	0,5	0,9	1,3	1,5	1,7	1,9																										
ALS-020Y	Nominal		2,1	2,2	2,7	2,7	3,0	3,0	3,0																								
AL3-0201	Max.		2,1	2,2	2,7	2,7	3,0	3,5	4,5																								
ALS-030Y	Nominal				3,6	3,6	4,1	4,9	7,0	7,5	7,5	7,5	7,5	7,5																			
	Max.				3,6	3,6	4,1	4,9	7,0	7,5	8,2	9,7	10	11																			
ALS-040Y	Nominal							10	10	10	10	10	10	10	10	10	10	10	10														
AL3-0401	Max.							20	20	20	20	20	20	20	20	20	20	20	20														
ALS-055Y	Nominal								34	35	35	35	35	35	35	35	35	35	35	35	35	35											
ALS-0001	Max.								34	38	41	49	53	57	65	69	70	70	70	70	70	70											
ALS-065Y	Nominal											54	61	68	82	89	95	95	95	95	95	95	95	95	95								
AL3-0031	Max.											54	61	68	82	89	96	109	123	130	151	165	179	190	190								
ALS-080Y	Nominal															105	111	124	137	143	162	175	188	190	190	190	190	190					
AL3-0001	Max.															105	111	124	137	143	162	175	188	207	226	238	251	270					
ALS-095Y	Nominal																215	265	265	265	265	265	265	265	265	265	265	265	265	265	265		
AL3-0731	Max.																215	295	365	400	506	530	530	530	530	530	530	530	530	530	530		
ALS-105Y	Nominal																			310	310	310	310	310	310	310	310	310	310	310	310	310	310
ML3=1031	Max.																			590	620	620	620	620	620	620	620	620	620	620	620	620	620

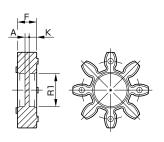

- Bohrungsdurchmesser, deren Felder Zahlen enthalten, werden als Standardbohrungsdurchmesser unterstützt.
 Bohrungsdurchmesser, deren Felder Zahlen enthalten, haben auf Grund der Haltekraft der Wellenverbindungskomponente ein eingeschränktes Übertragungs-Nenndrehmoment. Die Zahlen geben das Nenndrehmoment [Nm] an.
- Die empfohlene Wellentoleranz ist Klasse h7 (HA). Bei einem Wellendurchmesser von 35 mm beträgt die Toleranz jedoch -0005 Bohrungsdurchmesser zwischen den Minimum- und Maximumangaben in der Abmessungstabelle sind kompatibel. Bei Bohrungsdurchmessern, die von den in der obigen Tabelle abweichen, wenden Sie sich bitte an Miki Pulley für weitere Informationen.

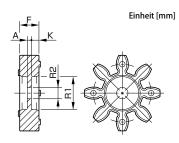
Standards Keilnuten

	H9 Keilnut											JS9 Keilnut										
	inaler sdurchm.	Boh- rungs-	Keilnut- breite	Kelinut-		inaler sdurchm.	Boh- rungs-	Keilnut- breite			inaler Jsdurchm.	Boh- rungs-	Keilnut-	Keilnut-		inaler Jsdurchm.	Boh- rungs-	Keilnut-	Keilnut-			
Wellen- durch- messer	Wellen- toleranz h7	durchm. d1 · d2 [mm]	W1 · W2 [mm]	höhe T1·T2 [mm]	Wellen- durch- messer	Wellen- toleranz h7	durchm. d1 · d2 [mm]	W1 · W2 [mm]	höhe T1·T2 [mm]	Wellen- durch- messer	Wellen- toleranz h7		breite W1·W2 [mm]	höhe T1·T2 [mm]	Wellen- durch- messer		durchm. d1 · d2 [mm]	breite W1 · W2 [mm]	höhe T1·T2 [mm]			
8	ВН	8	2 +0,025	9 +0,3	20	ВН	20	6 +0,030	22,8 +0,5	8	BJ	8	2 ±0,0125	9 +0,3	20	BJ	20	6 ±0,0150	22,8 +0,3			
9	ВН	9	3 +0,025	10,4 +0,3	22	ВН	22	6 +0,030	24,8 +0,5	9	BJ	9	3 ±0,0125	10,4 +0,3	22	BJ	22	6 ±0,0150	24,8 +0,3			
10	ВН	10	3 +0,025	11,4 +0,3	24	ВН	24	8 +0,036	27,3 ^{+0,3}	10	BJ	10	3 ±0,0125	11,4 +0,3	24	BJ	24	8 ±0,0180	27,3 +0,3			
11	ВН	11	4 +0,030	12,8 +0,3	25	ВН	25	8 +0,036	28,3 +0,3	11	BJ	11	4 ±0,0150	12,8 +0,3	25	BJ	25	8 ±0,0180	28,3 +0,3			
12	ВН	12	4 +0,030	13,8 +0,3	28	ВН	28	8 +0,036	31,3 +0,3	12	BJ	12	4 ±0,0150	13,8 +0,3	28	BJ	28	8 ±0,0180	31,3 +0,3			
13	ВН	13	5 +0,030	15,3 +0,3	30	ВН	30	8 +0,036	33,3 ^{+0,3}	13	BJ	13	5 ±0,0150	15,3 +0,3	30	BJ	30	8 ±0,0180	33,3 ^{+0,3}			
14	BH	14	5 +0,030	16,3 +0,3	32	ВН	32	10 +0,036	35,3 ^{+0,3}	14	BJ	14	5 ±0,0150	16,3 +0,3	32	BJ	32	10 ±0,0180	35,3 ^{+0,3}			
15	ВН	15	5 +0,030	17,3 ^{+0,3}	35	ВН	35	10 +0,036	38,3 ^{+0,3}	15	BJ	15	5 ±0,0150	17,3 ^{+0,3}	35	BJ	35	10 ±0,0180	38,3 +0,3			
16	ВН	16	5 +0,030	18,3 ^{+0,3}	38	ВН	38	10 +0,036	41,3 +0,3	16	BJ	16	5 ±0,0150	18,3 +0,3	38	BJ	38	10 ±0,0180	41,3 +0,3			
17	ВН	17	5 +0,030	19,3 +0,3	40	ВН	40	12 +0,043	43,3 +0,3	17	BJ	17	5 ±0,0150	19,3 +0,3	40	BJ	40	12 ±0,0215	43,3 +0,3			
18	ВН	18	6 +0,030	20,8 +0,3	42	ВН	42	12 +0,043	45,3 ^{+0,3}	18	BJ	18	6 ±0,0150	20,8 +0,3	42	BJ	42	12 ±0,0215	45,3 +0,3			
19	ВН	19	6 +0,030	21,8 +0,3	45	ВН	45	14 +0,043	48,8 +0,3	19	BJ	19	6 ±0,0150	21,8 +0,3	45	BJ	45	14 ±0,0215	48,8 +0,3			


[•] Wir können auch Standards fertigen, die oben nicht aufgeführt sind. Bitte kontaktieren Sie Miki Pulley.


So können Sie bestellen





Abmessungen Zahnkranz

 $\mathsf{ALS}\text{-}\mathsf{014} \sim \mathsf{030}\text{-}\mathsf{Y}\text{-}\mathsf{EL}$

ALS-040-Y-EL

 $\mathsf{ALS}\text{-}\mathsf{055} \sim \mathsf{065}\text{-}\mathsf{Y}\text{-}\mathsf{EL}$

 $\rm ALS\text{-}080 \sim 105\text{-}Y\text{-}EL$

Modell	F (mm)	R1 (mm)	R2 (mm)	K (mm)	A (mm)
ALS-014-Y-EL	6,2	3,5		2,5	1,2
ALS-020-Y-EL	8,2	6,2		3,4	1,4
ALS-030-Y-EL	10,2	8,5	-	4	2,2
ALS-040-Y-EL	12	18	-	4,5	3
ALS-055-Y-EL	14	24	-	5,5	3
ALS-065-Y-EL	15	30	-	5,5	4
ALS-080-Y-EL	18	37	15	7	4
ALS-095-Y-EL	20	43	20	8	4
ALS-105-Y-EL	21	50	20	8,5	4

So können Sie

